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By searching the 1.5 A Patterson function of myoglobin (space group P21) with intragroup vector sets 
characteristic of the heine group and of the main chain of a 4- or 5-turn e-helix, it is shown that it is 
possible to determine the orientation of the heme, and the axial directions of the prominent helices 
A, B, E, G, and H. Additional searches performed with helices A, G, and H correctly reveal the true 
orientations about the helical axes. Translation searches with intergroup vectors, similarly yield the 
correct positions of the heine and helices A, G, and H relative to a 21 axis. The relative y coordinates 
(along 21) of the heme group and a helix can be unambiguously found by a search using vectors from the 
heme Fe atoms to the correctly oriented helix. Several image-seeking functions are explored by varying 
the selection and weighting of the search vectors. The best results are obtained with an image-seeking 
function defined as a weighted average over a selected subset of search vectors. The selection is made for 
each setting of the vector set, and is based on the value of the Patterson function at each search vector in 
relation to the distribution of values in the entire Patterson function. 

Introduction 

Computer programs for interpreting stored Patterson 
functions of structures containing known rigid groups 
have been developed in several laboratories in recent 
years (Sparks, 1961; Huber, 1965, 1970; Braun, Horn- 
stra & Leenhouts, 1969; Hornstra, 1970; Nordman & 
Nakatsu, 1963; Schilling, 1970). Such programs have 
been used to determine the structures of several dozen 
small (i.e. non-protein) organic molecules. 

There is a close relationship between these Patterson- 
space methods and the corresponding reciprocal-space 
methods, such as those based on the rotation functions 
of Rossmann & Blow (1962) or Tollin & Cochran 
(1964), and several reciprocal-space translation func- 
tions (Rossmann, Blow, Harding & Coller, 1964; Tollin, 
1966; Crowther & Blow, 1967). The main difference be- 
tween the Patterson space and the reciprocal space 
methods is the seemingly trivial one of computational 
layout. Beyond this, however, the two approaches offer 
entirely different possibilities in selective sampling of 
their respective spaces, carried out at execution time. 

Successful applications of the reciprocal-space ap- 
proach include several interesting results obtained with 
biological macromolecules. Tollin (1969) has used the 
known structure of the myoglobin molecule from 
sperm whale myoglobin (SWMb, space group P21) to 
determine the complete crystal structure of seal my- 
oglobin (space group A2). Recently Lattman & Love 
(1970) have used the Rossmann-Blow rotation function 
to detect the similarity between the SWMb molecule 
and the molecules of single-chain lamprey hemoglobin 
(space group P212~21), and to determine the orientation 
of the molecules in the crystals of lamprey hemoglobin. 

Zwick (1969) has used reciprocal-space methods to 
search for the heme group and e-helices in myoglobin. 
He has found the approximate orientation of the heme 

group, the directions of three helices, and the location 
of one of them. These results are at least qualitatively 
comparable to ours, as reported here. 

In this paper, we present results obtained by Patter- 
son-space searching applied to sperm whale myoglobin 
using the c~-helix and the heme group as known rigid 
substructures. The procedures and programs used were 
essentially those described by Schilling (1970) and 
Nordman & Schilling (1970), modified to some degree 
as explained below. 

The crystal data for SWMb are: space group P2~, 
a=64.5,  b = 30.86, c=34.7 /k ,  f l= 106 °. The X-ray data 
for the native myoglobin to 1.5 A resolution were 
kindly supplied to us in 1966 by Dr H. C. Watson. 

Patterson functions and vector sets. 

Three distinct versions of the Patterson function were 
used. All were sharpened and calculated with their 
origin peaks removed, the scaling having been done 
by an isotropic Wilson procedure. The first two Patterson 
functions were computed on a grid having 60 x 60 x 60 
points per unit cell. This choice, which was necessitated 
by program limitations on the IBM 7090, corresponds 
to the somewhat unfavorable grid intervals of 64.5/60 = 
= 1.08, 30.86/60=0.51, and 34.7/60=0.58/k in the x, 
y, and z directions. These two Patterson functions were 
computed to 1.5 and 2-0 A resolution respectively, 
each with a damping parameter D = 8 A 2 in the damp- 
ing factor exp [ -D( s in  0/2) 2] applied to the 'point 
atom' (i.e. no-falloff) Patterson coefficients (Nordman 
& Schilling, 1970). 

The third Patterson function was calculated as a 
'point atom' (i.e. D =0) function to 1.5/~ resolution. It 
was evaluated on a grid having 120 x 60 x 60 points per 
unit cell, which corresponds to nearly uniform grid 
steps of 0.54, 0.51, and 0.58 A in the three directions. 
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The Fourier synthesis program of the X-RA Y system 
(Stewart, Kundell & Baldwin, 1970) was used, suitably 
modified so as to produce the Patterson function in a 
form acceptable as input to the search programs. The 
majority of the searches described below were performed 
with this third Patterson function. 

The myoglobin Patterson function differs markedly 
from its small-structure counterparts. The main di- 
stinction is the deep layer of unresolved vector density 
which constitutes the 'background'  of the function. At 
1.5 A resolution and zero damping, the median of the 
computed values of the function represents a vector 
density of about 100 times the height of a single carbon- 
carbon peak, and 95 % of the function falls in the range 
80 to 120 carbon-carbon vectors. 

The search vector components and overlap weights 
were computed by means of the VEC program, which 
has been described in some detail elsewhere (Nordman & 
Schilling, 1970). A considerable speed-up of the cal- 
culation was achieved by internally sorting the vectors 
according to the length of one component prior to the 
calculation of overlap weights. 

The largest search group used was an 18-residue c~- 
helix containing 90 atoms and yielding over 4000 dis- 
tinct interatomic vectors. At 1.5 A resolution and D = 0, 
any two vectors that differ by a vector of magnitude 
less than 1.07 A are expected to overlap to some degree. 
As a result of multiple overlap of incompletely resolved 

B_-O ~ 

U 
0 ° A =90" 

B =180" 
Fig. 1. Rotation search for the direction of the normal to the 

plane of the heine group. The plotted function is rmin(28,52) 
averaged over 5 settings, 72 ° apart, about the heme normal. 
The contours are at function values which exceed the mean 
by no', where n = 1,2,. . . ,  6. 

peaks, the effective vector density within the cluster 
of vectors typically reaches values of 10-20 times the 
peak height of a single carbon--carbon vector. 

In searching the 1.5 A 'point atom' Patterson func- 
tion for c~-helices it was noticed that the best results 
were obtained when the vector set was assumed to be 
slightly 'sharper'  than the Patterson function. This 
observation can be rationalized by the reasonable as- 
sumption that the effective thermal motion of the 
helical main-chain atoms is less than that of the 
structure as a whole. Accordingly, the majority of the 
vector sets used in searches of the 1.5 A 'point-atom' 
Patterson function were calculated with an assumed 1-2 
A resolution, and a D value of zero, These parameters 
give a maximum calculated overlap radius of 0.85 A. 

It is usually not practical to carry out a Patterson 
search using al l -  say, 4000 - interatomic vectors in a 
moderately large search group. Neither would it be 
correct to do so, since the overlapping of two nearly 
coincident vectors results in the near doubling of the 
weight of each; inclusion of both vectors in the search 
would amount to an overweighting of the pair. Stated 
differently, two nearly coincident search vectors will, 
in effect, convey the same information to the image- 
seeking function, and the use of both vectors is redun- 
dant. A procedure for arriving at the best set of search 
vectors is to select the highest-weight vectors, subject 
to the secondary condition that no two selected vectors 
differ by a vector whose magnitude is less than a spe- 
cified minimum separation parameter. This selection of 
search vectors was carried out with a simple program, 
VSEL (Nordman & Schilling, 1970), using minimum 
separation parameters of 0.5 or 0.6 A. The number of 
vectors used as search vectors ranged from 50 to 400 in 
the various searches described below. 

Image-seeking functions 

Because of the high overall level of the myoglobin Pat- 
terson function, many of the commonly used image- 
seeking functions are unsuitable. The value of the Pat- 
terson function typically exceeds the vector density of 
the search vector set everywhere, and consequently the 
search vector set can be accommodated in the Patterson 
function in any position. 

The image-seeking function which we have found 
most useful in small-molecule problems is the 'min- 
imum average' function, min(M,N) (Schilling, 1970). 
This function is defined as 

min(M,N)=~,Pj/~,wj,  j =  1, . . . . ,  M, 

where Pj and wj are, respectively, the Patterson value 
and weight of the search vector having the j th  lowest 
value of P/w. The sums include the M search vectors 
having the lowest values of P/w, where M is a number 
typically chosen as 10 to 50 % of the total number of 
search vectors, N. In the limit of M =  1, the function 
l~ecomes a weighted minimum function. At the other 
extreme of M = N  the minimum average function is 
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equivalent to the ordinary (unweighted) sum function, 
and ~wj is a constant. 

The rationale behind the 'minimum average' func- 
tion is similar to that behind the minimum function: 
if the lowest P/w values in general represent search 
vector points at which the Patterson function is too 
low to accommodate the vector density of the search 
vector, then a high value of the min(M,N) function 
should sensitively reveal the correct orientation (trans- 
lation) of the search vectors, by selectively displaying 
a good fit of even the worst-fitting vectors. Since, as 
mentioned above, the Patterson function of myoglobin 
is high enough to accommodate the search vectors every- 
where, it is not surprising that the ordinary min(M, N) 
function is a poor image-seeking function in this ap- 
plication. 

The manner in which it fails is, essentially, as follows: 
since the background is high, the relative fluctuations 
of the Patterson function are modest. Consequently, 
the search vectors enter the ranks of those having the 
lowest P:/w:, more by reason of a high value of wj than 
a low value of Pj. Since wj is a characteristic of the 
search vector itself and not of the Patterson point it 
scans, it follows that only those vectors with the highest 
wj tend to determine the value of min(M, N). The result 
of the search then tends to depend only on the M 
search vectors with the highest values of w, and much 
of the structural detail contained in the larger set of N 
search vectors is lost. 

A considerable improvement is achieved by using, 
what might be called, a weighted sum function: 

wsum(N)= ~ w i P : / ~ w  J j =  1, . . . ,  N. 
J J 

Here, the summations include all N search vectors. The 
sum of the weights appearing in the denominator is a 
constant in this case. If we denote, by Pc, the calculated 
height of a single carbon-carbon vector peak, then 

P~g = wjPc 

represents the value of the convolution molecule, i.e. 
of the Patterson function of the search group, evaluated 
at the vector point j. Consequently, 

wsum(N)=(~PjP j ° ) / (Pc~wj )  j =  l, . . . ,  N 
J J 

where the denominator is a constant. If the sum in the 
numerator is replaced by the corresponding integral, 
it can, alternatively, be evaluated in reciprocal space, 
and becomes equivalent to the criterion of fit used in 
rotation and translation functions as pointed out above. 

An alternative to the weighted sum function can be 
developed by the following argument: as stated above, 
if the Patterson function everywhere exceeds every 
value of w:Pc, it will not be possible to categorically 
rule out any rotational or translational positioning of 
the search vector set. However, it is possible, at least 
qualitatively, to estimate the likelihood that a search 
vector set of given w: values is correctly placed in the 
Patterson function. For example, placing a high-weight 
vector at a high Patterson value and a lower-weight 
vector at a lower Patterson value represents a more 
likely solution than the reverse choice, even though 
either choice is formally compatible with the Patterson 
function. 

Let us think of the Patterson function as the sum of 
two parts: the search group Patterson function, or 

) 
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Fig. 2. Rotation (A, B) searches for the directions of the a-helices, calculated with a modified wsum function and averaged over 
C as explained in the text. Contour levels are at na above the mean of the function, where n = 1,2, 3. Patterson function res- 
olution, number of search vectors, and assumed helical parameters are: (a) 1.5/~, 66 vectors, n = 3"60, d= 1.50/~; (b) 2.0/~, 
66 vectors, n= 3"60, d= 1-50/~; (c) 1.5/~, 72 vectors, n=3.72, d= 1.47/~. Fig. 2(d) is a key to the coordinate system and to the 

identity of the helices, whose true directions are marked in (a)-(c). 
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Fig. 3. Rotation search with vectors of a 5-turn e-helical 
model. The rmin(40,70) function is contoured at values 
which exceed the mean by no', where n = 1, . . . ,  5. 

convolution molecule, and the 'background' Patterson 
function. If the distribution of 'background' Patterson 
values were known, the probability that a search vector 
j is correctly placed at a Patterson function value P 
could be judged by whether or not P-wiPe is a likely 
'background' value. The distribution of 'background' 
Patterson values cannot be known, of course, but if the 
search group is small compared to the entire structure, 
the distribution of values at the grid points of the Pat- 
terson function itself is a reasonable (although slightly 
high) approximation. We introduce this distribution by 
assigning to each value of P-wjPc a number propor- 
tional to the rank of this value among the grid point 
values of the entire Patterson function. On a scale 
normalized to a maximum value of 1000, the number 
700, for example, is assigned to a (P-wiPe) value that 
exceeds 70 % of the values of the Patterson function. 
When used in this sense, a high rank corresponds to a 
good fit of the search vector to the Patterson function, 
a lower rank to a worse one. We now introduce the 
'minimum average' feature by defining an image-seek- 
ing function rmin(M,N) as the average of the above- 
defined ranks of the M lowest-ranking (P-wjPc) values 
among those of the N search vectors. 

The rmin(M,N) and wsum(N) functions are the 
two principal image-seeking functions used in this 
study. Several examples and comparisons of the two 
are given in the following sections. 

Rotation searches 

The structure of the search group is specified in terms 
of a Cartesian coordinate system (X, Y,Z). The Euler 
angles (A, B, C) represent a rotation of the search group 
coordinate system from an initial orientation in which, 
for a monoclinic crystal, Xlla, Yllb, and Zl[(axb) .  
For our purposes, the Euler angles are clockwise ro- 
tations, viewed toward the origin, and carried out in 
sequence as follows (Schilling, 1970): 

A is a turn about the original X axis, 
B is a turn about the rotated Y axis, and 
C is a turn about the rotated X axis. 

A and B can be visualized as the longitude and latitude 
representing the direction of the rotated X axis on the 
surface of a sphere. The (unrotated) monoclinic a di- 
rection is the 'north' pole (A=0,  B=0),  b is on the 
equator (A = 90, B =  90°), and c is at A =0,  B=fl. 

To a first approximation, the intragroup vector set 
of the heme group is a circular disk, and that of the c~- 
helix a cylindrical rod. If the approximate symmetry 
axis of the group is specified to lie along X, the search 
in C will be relatively insensitive, since it corresponds 
to rotation about the axis of the disk or cylinder. It is 
then possible to separate the search for the direction 
(A,B) of the approximate symmetry axis from the 
subsequent search for the proper azimuth (C) about 
this axis. To further reduce the C-dependence in the 
(A, B) searches, the image-seeking function was roughly 
averaged over C for each value of A and B, by calcul- 
ating the mean of five settings separated by 72 ° in C. 

In rotation searches it was generally found that the 
angular resolution could be increased by giving long 
search vectors increased weight, or otherwise empha- 
sizing their role in the image-seeking function. In the 
wsum(N) function this added emphasis can be in- 
troduced by replacing the overlap weight w with a 
modified weight w', which includes a dependence on the 
vector length L. In conjunction with the older a-helix 
rotation searches, several expressions for w' were qua- 
litatively compared, and the form w'= (w-2-0)(L-5-0) 
ft selected. The choice of constants in this expression 
was not a critical one, however. In the rmin(M,N) 
function, the overlap weight enters into the expression 
for the search-group Patterson function, w~Pc, and a 
replacement of w with w' would mis-scale wjPc relative 
to P. The emphasis on vector length, radius, etc., in 
rmin(M,N) rotation searches was therefore introdu- 
ced in the selection of search vectors, rather than in 
their weighting. 

The Cartesian atomic coordinates in ~-chlorohemin 
(Koenig, 1965) provided the geometry of the heme 
group. Slight adjustments were made to impose strict 
4mm symmetry and to make the group planar except 
for the iron atom, which was assumed to be 0.25 A out 
of the plane. The assumed group contained 33 atoms, 
including the 8 carbon atoms 0c to the heme group. 
Intraheme vectors were computed to 1.2 ,& resolution, 
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and search vectors selected using a separation param- 
eter of 0.5 A. 

Fig. 1 shows the result of a heine (A,B) rotation 
search carried out with the 52 vectors for which (w- 
3.0)L > 18 A. The rmin(M, 52) function was computed 
at 487 points in A-B space, and consequently involved 
52 x 487 x 5 evaluations of the Patterson function, done 
by linear interpolation between the stored values. The 
CPU time required on an IBM 360/67 computer was 
179 sec, or 1.4 ms per vector setting. Several versions 
of the function, for different choices of M, were com- 
puted simultaneously. A subsequent fine search in A 
and B served to pinpoint the dominant maximum, 
which unambiguously shows the correct orientation of 
the heme group normal. In the function shown in 
Fig. 1, the peak height at the correct (A,B) angles ex- 
ceeds the mean value of the function by 6.9 times the 
standard deviation of the function from its mean. 

One-dimensional C searches for the correct orien- 
tation of the heme group about its correctly oriented 
normal were considerably less striking. Nevertheless, 
the highest maximum in both wsum and rmin calcul- 
ations was found to lie at, or within a few degrees of, 
the correct C value. 

A considerable variety of c~-helix searches was carried 
out, both with the early coarse-grid (60 x 60 x 60 points 
per cell) Patterson functions, and with the later (120 x 
60 x 60 points per cell) version. For reasons of economy, 
several variations explored with the older Patterson 
functions and the IBM 7090 computer were not repeat- 
ed with the later Patterson function and the IBM 
360/67. The results presented in the following para- 
graphs illustrate the main points to be made. 

The vector sets for the older e-helix (A, B) searches 
were calculated for a 4-turn e-helix containing 74 atoms, 
or 14.8 5-atom residues. The 'standard'  e-helical par- 
ameters were assumed, i.e. n=3.60  residues per turn 
and d =  1.50 A per residue. The values n = 3.72 residues 
per turn and d =  1"47 A per resMue were also used. 

The (A,B) searches based on these vector sets used 
the wsum image-seeking function averaged over five 
values in C, 360/5 degrees apart, at each setting in A 
and B. The above mentioned compromise between 
vector length, L, and overlap weight, w, was introduced 
by evaluating the w sum function as "~w'P/~,w', where 
the modified weight w' was chosen as the quantity 
(w-2.0) (L-5.0) A. 

Three such (A, B) searches performed with the older, 
coarse-grid Patterson function are shown in Fig. 2. 
The result in Fig. 2(a) was obtained with the Patterson 
function computed to 1.5 A resolution using D=8 .0  
A 2. 66 vectors with w'>20.0  A were used. Fig. 2(b) 
shows a similar search with the X-ray data limited to 
2.0 A resolution. The 'standard'  e-helix was assumed 
in both cases. Fig. 2(c) shows a search of the 1.5 A 
Patterson function with 72 vectors (w'> 20.0 A) based 
on the 'non-standard'  c~-helix with n = 3.72 and d =  1.47. 
The true helical directions are indicated with crosses in 
the contour maps and are identified in Fig. 2(d). Helix 

E has a 7 ° bend in the middle; the directions of the two 
halves are shown separately. 
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Fig. 4. Results of searches in the angular coordinate (C) about 
the correctly oriented axis of the ~-helix. (a) and (b) represent 
helices A and G pointed in the true direction, (c) represents 
helix H with the model helix correctly pointed (top), and 
turned end for end (bottom). Arrows indicate the true 
positions of best fit calculated from the atom coordinates. 
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Fig. 2(a) clearly shows the correct orientations of the 
axes of four of the five prominent helices in the mol- 
ecule, namely A, E, G, and H. These helices contain 
respectively 16, 20, 19, and 26 residues, and all con- 
form closely to the 's tandard'  c~-helical values of n and 
d (Watson, 1969). The similarity between Fig. 2(a) and 
the only slightly more ambiguous Fig. 2(b) suggests that 
the directions of 4-turn or longer c~-helices should be 
recoverable from somewhat less well-resolved Patter- 
son functions than those used here. 

The fifth prominent helix in the myoglobin molecule 
is B, with 16 residues. The true values of n and d for 
this helix are 3.72 and 1.47 respectively (Kendrew, 
1962; Watson, 1969). It is interesting to note that the 
peak indicating helix B is sharply enhanced in Fig. 
2(c), while the peaks of the four 'standard'  helices are 
reduced in height. 

For  the searches of the more recent, 120 x 60 x 60 
point per cell Patterson function, a 's tandard'  5-turn 
e-helical segment of 90 atoms, or 18 residues, was used. 
A separation parameter of 0.6 A was used to eliminate 

close overlaps among the initial set of 4005 intragroup 
vectors. For  the (A,B) rotation searches, the search 
vectors were chosen as those having the highest values 
of (w-3.0) X, where X is the component of the vector 
along the axis of the helix. 

Searches for the directions of the helices were made 
using the rmin function, and averaging over C, as 
before, by a 5-step rotation. An example is shown in 
Fig. 3. This search was made with 70 vectors for which 
(w-3.0)X> 25 A. The weights, w, of these vectors ranged 
from 17.5 to 5.1, and their lengths from 4.8 to 18.4 ,~,. 
The steps in A and B were taken as 5 ° over most of the 
angular range; near the poles the steps in A were larger. 
Regions where the function exceeded its mean value 
by 1.5 a were recalculated on a finer grid. 

Fig. 3 is a clear improvement over Fig. 2(a). One 
reason for this is the denser Patterson grid; however, it 
is also likely that the rmin (40, 70) image-seeking func- 
tion is inherently better than the modified wsum(66) 
function. This point is discussed more fully below. 

There is no obvious interpretation of any of the 

Table 1. Comparison of  the image-seeking functions wsum(N) and rmin(N,N) for translation searches 

Search vectors N Weight (True peak-mean)/a False peaks higher than true* 
cutoff wsum(N) rmin(N, N) wsum(N) rmin(N, N) 

Heme-heme (21) 50 3.10 4.58 4.29 0 0 
Heme-heme (21) 75 2.52 4.45 3.51 
A-A (21) 300 3.56 2.58 3-48 3 0 
A-A (21) 400 3.23 3.76 
G-G (21) 200 3.21 3.61 3.88 0 0 
G-G (2t) 300 2.91 3-60 3.66 0 
t t-H (21) 200 3-21 3-04 3.71 2 2 
H-H (21) 300 2.99 2.58 2.77 7 
(2 heme Fe)-H 180 5.66 4.94 0 0 

* Missing entries signify that an exhaustive peak search was not made. 

X 
0 1"0 

o o 

1.0 / 

Fig. 5. Translation search for the x and z coordinates of the heme group. Intergroup vectors between two screw-axis related berne 
groups were used. The wsum(50) image-seeking function is contoured at values exceeding the mean by na, where n = 1 . . . . .  4. 
The true position is indicated at (0.49, 0.71) and corresponds to the highest peak in the map. 
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lower peaks, some of which reach values of mean + 2o" 
in the image-seeking functions. It is possible that the 
mean + 2.20- peak below the center of Fig. 3 represents 
helix D (7 residues), whose true direction (A = 38, B =  
93 °, rmin = mean + 0-5or) is only 8 ° from the peak max- 
imum. On the other hand, the two other minor helices, 
C (7 residues, A = 80, B = 7 8  °) and F (10 residues, A = 
7, B =  108 °) lie at rmin values of only m e a n - 0 . 3 ~  and 
mean+0 .0a  respectively, and are far removed from 
any significant maxima in rmin. 

It should be pointed out that the quadrant (A, B) of 
the sphere, shown in Figs. 2 and 3, and its 'antipode'  

(180 ° + A, 180 ° -  B) do not represent identical searches 
when the search group is totally asymmetric. They re- 
present an end-for-end rotation of the helix. In the 
'cylindrical' approximation to the vector set, which is 
implied by the averaging over C, no significant differ- 
ences were found between corresponding peak heights 
in the two quadrants. Accordingly, only one of the two 
quadrants is shown. 

Searches in C at the peak values of both (A, B) and 
(180 ° + A, 180 ° - B) of helices A, G, and H were carried 
out in order to establish the correct orientation about 
the helix axis, and the end-for-end direction of the 
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Fig. 6. Translation searches for the G helix (top) and the H helix (bottom), each performed with sets of vectors between helices 
related by the 21 axis. The rmin(150, 200) function is contoured at values exceeding the mean by ha,  where n= 1 . . . . .  4. The 
true positions are indicated by crosses, and correspond to the highest peak in each case. 
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Fig. 7. One-dimensional search for the relative y coordinate 
of the heine group and helix H, both correctly placed in x 
and z. The 180 vectors from the two Fe atoms to the 90- 
atom helical model were used. The vector set was arbitrarily 
generated so that the true y value is zero. 

helix. Vectors for these searches were selected so as to 
maximize the quantity ( w - 3 . 0 ) X R ,  where R is the 
radial and X, as before, is the axial component of the 
vector relative to the helix axis. 

Fig. 4 shows the results for the three helices correctly 
'aimed' and for helix H turned end-for-end. The A 
helix consists of 16 residues (3-18), the G helix of 19 
residues (100--118), and the H helix of 24 residues 
(125-148) (Kendrew, 1962; Watson, 1969). There can 
be no unique way to fit the 18-residue model helix to 
these units. Instead, we expect to find a sequence of sev- 
eral good coincidences separated by 360°/n ~ 100 °. The 
true C values corresponding to these coincidences were, 
for each helix, determined by least-squares fitting of the 
model helix to the atomic coordinates of the helix in 
the myoglobin structure. These calculated C values are 
marked in the upper margins of the plots. Other ac- 
ceptable positions, 100 ° apart, are also indicated. The 
accompanying numbers designate the residues in the 
myoglobin chain that 'match' the 18-residue model 
helix at the particular setting. It is understood that the 
model helix overhangs the end of the myoglobin helix, 
whenever the residue sequences in Fig. 4 extend outside 
the helical regions given above. It can be seen from the 
plots that the maxima of the rmin(30,60) function 
match the true positions very well. 

The choice of direction along the helix axis is some- 
what less clear-cut, and some 100 ° periodicity was found 
in all three C searches performed with the model helix 
pointing in the wrong direction. The result for helix 
H is shown in Fig. 4(c). The pattern of maxima sep- 
arated by 100 ° is less prevalent than in the correctly 
pointed search. It is quite possible that the distinction 
could be improved by selecting search vectors so as to 
preferentially include vectors that involve the oxygen 
and beta-carbon atoms. It is also quite possible that a 
mathematical analysis of data such as those in Fig. 4 

could provide a more reliable criterion for judging the 
presence or absence of a cyclic repeat, and perhaps 
even yield a 'best' value for the corresponding A C. 
Neither of these possibilities was pursued further, how- 
ever. 

Translation searches 

All translation searches described here were done with 
the 1.5 A 'point-atom' (D=0) Patterson function com- 
puted on a grid of 120 x 60 x 60 points per cell. Vector 
sets were computed to 1.2 A resolution; the separation 
parameter used in selecting search vectors was 0.5 A 
for heme-heme vectors, 0.6 A for others. 

A two-dimensional heme-heme translation search is 
shown in Fig. 5. The search was carried out with inter- 
group vectors from one correctly oriented 'reference' 
heme group to its screw-axis related mate. The coor- 
dinates of the search map refer to the displacement of 
the search vector set, that is, a peak at (x, z) implies that 
the 'reference' group is to be translated by ( -  x/2, - z/2) 
from the position assigned to it in the vector calculation. 
In this case, the vector set was calculated with the center 
of the heme group located on the 21 axis; hence, the 
peak at (0.49, 0.71) in the search map correctly gives the 
location of the heme group center as x = -  0.245, z=  
-0.355. 

Similar two-dimensional translation searches were 
made using vectors between pairs of screw-axis related 
18-residue segments of e-helix, properly oriented to 
match helices A, G, and H. 

The interhelix vector set between two non-parallel 
e-helices is much more 'diffuse' than either an intra- 
helix or a heme-heme vector set. That is to say that 
extremely high overlap weights are less likely to occur 
in an interhelix vector set, and that the set occupies a 

6 

E, 70 
.c__ 4 6, 70 
.~  ~ HEME,52 

I 

" ' ' ~ " " ' ~ / 4 ,  70 .E 
E 

2 
B,70 
A,70 

i J 0".5 ~ ' ' ' ' 
1.0 

M/N 

Fig. 8. Plots of the function [rmin(M,N)-(rmin(M,N))]/a vs. 
the ratio M]N for rotation searches. For each curve the value 
of rmin(M,N) is the peak value at the true (A,B) setting for 
the search group in question. The quantity (rmin(M,N)) is 
the mean of rmin(M,N) taken over all directions (A,B), and 
a is the standard deviation from this mean. The total number 
of vectors N used in each search is shown on the right. 
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larger volume of Patterson space. It is then reasonable 
to expect that a larger number of search vectors will be 
needed to adequately portray the cross-Patterson func- 
tion, assuming that the minimum separation between 
the selected search vectors is constant. 

Fig. 6 shows two of the c~-helix translation searches. 
In both cases, the highest peak in the search function 
falls at, or very near, the true position. The third c~-helix 
translation search was similarly unambiguous. 

By means of a three-dimensional search it should 
be possible to find the positions, relative to one another, 
of two correctly oriented, symmetrically unrelated 
groups. A partial search of this kind was done with 
the 180 vectors from the two heme iron atoms to a 
90-atom model helix oriented as helix H. The calcul- 
ation was performed, not as a complete three-dimension- 
al search, but as a set of five one-dimensional searches 
in y at discrete values of x and z. If the x and z com- 
ponents of the vector joining the origins of the heme 
group and the H helix are correctly assigned, (i.e., 
taken as corresponding to the highest peaks in Figs. 
5 and 6), then the y search of Fig. 7 is obtained. Here, 
the vector set was arbitrarily generated so that y = 0  
corresponds to the true position. The fact that a strong 
maximum occurs at y = 0  shows that the relative y 
coordinates of the two groups can be found in this way. 

Four more y searches were done using (x,z) values 
indicated by lower (false) peaks in Figs. 5 and 6. None 
of these exhibited a clear maximum, and none had a 
value of rmin(144, 180)higher than 235 on the scale of 
Fig. 7. We conclude, then, that such one-dimensional 
y searches could be used not only to find relative y coor- 
dinates, but also to resolve ambiguities that might 
exist in the (x, z) searches. 

Discussion 

In the course of this work a large number of searches 
were calculated, covering a variety of choices of param- 
eters. Many of these searches were less successful than 
the examples shown above. In this section we discuss 
some criteria which seem to determine the likelihood 
of success. 

It appears that for any given search group the rota- 
tion search tends to be safer than the translation 
searches, that is, less likely to give an ambiguous or 
false result. There are two reasons for this: differences 
between the group and the optimally-fitted model are 
amplified in the intergroup vector set, because the 
errors in the x and z components of vectors between 
screw-axis related atoms are twice the errors in the 
corresponding atomic coordinates. Secondly, as was 
pointed out above, the intragroup vector sets tend to 
contain more vectors of very high weight. 

Table 1 and Figs. 8 and 9 present summaries of 
obtained results. As the basis for comparison we have 
used the number of standard deviations by which the 
peak representing the true solution exceeds the mean 
value of the search function. 

Table 1 presents a comparison between the image- 
seeking functions wsum(N) and rmin(N,N). The re- 
sults suggest that for a given set of N search vectors 
rmin(N,N) is a somewhat better image-seeking func- 
tion than wsum(N), but the difference is not great. 
There is also a suggestion that nothing is gained by 
including search vectors having weights less than about 
3.2 carbon-carbon vectors, and that inclusion of too 
many weak vectors might even be harmful. 

Figs. 8 and 9 demonstrate the advantage of using 
rmin(M,N) with the 'minimum average' feature in- 
cluded, i.e., with the execution-time selection of the M 
lowest values of PTwjPc for inclusion in the image- 
seeking function. In every case, an improvement can be 
achieved by choosing M less than N. It appears, then, 
that the best choice of image-seeking function is 
rmin(M,N),  where M is 50-80 % of the value of N. 

In summary, the results of this work suggest that Pat- 
terson-space search techniques could be useful in the 
crystallography of biological macromolecules, namely 
for purposes such as: (1) to detect the presence, to deter- 
mine the orientation and, in favorable cases, the position 
relative to a symmetry element of helices and other 
known or assumed relatively large substructures; (2) 
in the presence of a heavy atom, to determine the pos- 
ition of any such oriented substructure relative to the 
heavy atom; (3) to determine the orientation and 
position of any heavy-atom containing rigid group, 
regardless of size. 

The author is indebted to Dr H. C. Watson for the 
myoglobin X-ray data, to Dr C. M. Venkatachalam for 
the atom coordinates of the model helices, and to Drs 
J. W. Schilling and R. Hoge for many helpful discus- 
sions. Support of this investigation under grants H E -  
08612 and GM-15259 from the National Institutes of 
Health is gratefully acknowledged. 
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Fig. 9. Plots of  [ r m i n ( M , N ) -  (rmin(M,N))]/a versus M/N for  

t ranslat ion searches. Here,  r m i n ( M , N )  is the peak value at 
the true (x,z) setting for each interhelix or in terheme vector  
set (A,G,H, and H E M E ) ,  or the peak value at the true y 
setting for the vector  set 2Fe-helix H. The means  of  rmin  
(M,N) are taken  over all (x,z) respective y values of the 
search in question,  and o" is the cor responding  s tandard  
deviat ion f rom the mean.  The total  n u m b e r  of  vectors N 
used in each search is shown on the right. 
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Choice of Scans in X-ray Diffraction 
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In a recent paper (Werner, S. A. Acta Cryst. (1971). A27, 665) it was pointed out that the choice of 
scans in a neutron diffraction experiment should be based on the criterion that the diffracted beam 
enters the detector on its centerline for each angular setting of the crystal. The same criterion should 
be applied in X-ray diffraction. Since the spectral distribution of a source of X-rays and neutrons is 
quite different, conclusions regarding the optimum coupling between the detector and crystal motions 
are different in these two cases. In this paper, formulas are derived (within the framework of certain 
gaussian approximations) for the optimum scanning ratio g in equatorial plane X-ray diffraction exper- 
iments on single crystals. For the case when a monochromator is not used, g is independent of scattering 
angle 20B for a large range of instrumental parameters and Bragg angles 0B. It is found that a 0-20 scan 
is essentially never advisable. An expression for g is derived for the case when a planar monochromator 
is used in symmetric Bragg reflection. The optimum scan is found to depend on the scattering angle, but 
not in such a marked way as in the neutron case. Coupling the detector and crystal motions in the man- 
ner suggested allows one to decrease the acceptance aperture to its minimum width, thus keeping the 
background due to thermal diffuse scattering (TDS) and incoherent scattering as low as possible. 

I. Introduction 

The problem of the selection of scans in single crystal 
neutron diffraction experiments was discussed in a 
recent paper (Werner, 1971). The choice of scans in 
X-ray diffraction requires special attention because 
the geometry and spectral distribution of a source of 
X-rays and neutrons are quite different. Equatorial 
plane X-ray diffraction (like neutron diffraction) 
experiments on single crystals are generally carried out 
using either an m-scan (crystal rotating, detector fixed) 
or a 0-20 scan (detector coupled 2:1 to the crystal). 
In view of the widespread use of instrumentation 
involving tape-controlled and computer-controlled 
diffractometers, restricting the scanning of  Bragg 
reflections to these two modes is not a necessary con- 

straint. The purpose of this paper is to examine the 
question of whether there is in general a better way 
to scan Bragg reflections in X-ray diffraction. 

Over the years a number of papers have been pub- 
lished on the theory of measuring integrated intensities 
and on the various geometrical considerations neces- 
sary in X-ray diffraction experiments on single crystals 
[see for example Alexander & Smith (1962), Burbank 
(1964), Ladell & Spielberg (1966)]. A summary of the 
results of these papers regarding the necessary size 
of the receiving aperture and the range of scan is given 
in the book by Arndt  & Willis (1966). However, the 
analysis given in these papers does not permit the 
experimentalist to readily make a decision on the 
optimum coupling ratio between the detector and 
crystal motions. The intent of this paper is to derive an 


